Kamis, 24 November 2011

FACEBOOK

JIKA INGIN MASUK FACEBOOK KLIK DISINI

WATER LEVEL CONTROL

Rangkaian Water Lever Control atau yang sering disingkat dengan WLC atau rangkaian kontrol level air merupakan salah satu aplikasi dari rangkaian konvensional dalam bidang tenaga listrik yang diaplikasikan pada motor listrik khususnya motor induksi untuk pampa air. Fungsi dari rangkaian ini adalah untuk mengontrol level air dalam sebuah tangki penampungan yang banyak dijumpai di rumah-rumah atau bahkan disebuah industri di mana pada level tertentu motor listrik atau pompa air akan beroperasi dan pada level tertentu juga pompa air akan mati. Untuk mengontrol level air dalam tangki penampungan dapat menggunakan dua buah pelampung yang mana masing-masing dari pelampung tersebut menentukan batas atas dan batas dari level air. Jadi pada saat anda sedangkan menjalankan pompa air, dengan mengaplikasikan rangkaian Water Level Control pada pompa air yang anda gunakan, anda tidak perlu menunggu hanya untuk mematikan pompa air pada saat tangki atau bak air penuh karena apabila air dalam tangki sudah penuh maka pompa akan padam dengan sendirinya tanpa harus menekan tombol stop. Demikian juga apa bila air dalam tangki atau bak mulai berkurang sesuai dengan batas yang telah ditentukan maka pompa akan jalan dengan sendirinya. Dengan demikian ada bisa melakukan kegiatan yang lain yang lebih berguna, misalnya nonton acara gossip di Channel TV kesayangan anda sambil menikmati sedapnya pisang goreng yang dibalut dengan sambal terasi yang rasanya benar-benar nendang bangets. Lupakan tentang pisang goreng, dan untuk lebih jelasnya perhatikan bagaimana sebuah pelampung dapat bekerja pada sebuah rangkaian Water Level Control sebagai berikut :
                                        Gambar 1. Prinsip Kerja Pelampung

Penjelasan dari gambar di atas :
Pada kondisi (1) kita anggap bahwa untuk pertama beroperasi air di dalam tangki seperti yang terlihat pada gambar. Dengan keadaan yang demikian, maka otomatis Pelampung 1 yang difungsikan sebagai batas atas air dan Pelampung 2 yang difungsikan sebagai batas bawah akan menggantung pada sebuah tali pelampung sehingga menyebabkan kontak pelampung yang berada di antara 2 dan A1 akan menutup karena gaya berat dari kedua pelampung. Akibatnya, motor pompa air akan beroperasi.
Ketika pompa air mulai mengisi tangki/bak maka pelampung 2 akan terangkat ke atas atau terapung seperti yang terlihat dalam gambar pada kondisi (2). Meskipun pelampung 2 sudah terapung, kontak pelampung tetap pada posisi close, pabrik sudah merancang dengan sedekian rupa sehingga hal demikian bisa terjadi, pelampung 1 masih mampu untuk menutup kontak pelampung sehingga pompa tetap beroperasi.
Seiring dengan semakin bertambahnya air tangki maka Pelampung 2 akan semakin bergerak ke atas sesuai dengan volume air dalam tangki tersebut. Apabila level air telah sampai pada Pelampung 1 seperti terihat dalam gambar untuk kondisi (3) maka Pelampung 1 akan terangkat ke atas atau terapung bersama-sama dengan pelampung 2. Akibatnya, kontak pelampung antara 2 dan A1 akan membuka dan motor atau pompa air akan mati. Jadi, bukan Pelampung 2 yang mendorong Pelampung 1 sehingga kontak pelampung terbuka (open).
Apabila air di dalam tangki atau bak mulai berkurang atau lebih rendah dari Pelampung 1, maka pelampung 1 akan menggantung pada kontak pelampung seperti lihat pada gambar untuk kondisi (4). Meskipun Pelampung 1 sudah menggantung, akan tetapi kontak pelampung masih tetap pada kondisi open karena Pelampung 1 belum cukup berat untuk menutup kontak tersebut. Jika air sudah benar-benar berkurang dalam tangki sesuai dengan batas bawah yang telah ditentukan maka pelampung 2 akan menggantung seperti pada kondisi (1) bersama-sama dengan pelampung 1. Kolaborasi kedua pelampung tersebut menghasil berat yang cukup untuk menutup kontak pelampung antara 2 dan A1 sehingga pompa air dapat berjalan atau beroperasi. Setelah itu ke kondisi (2), (3), (4), dan seterusnya.
Berikut ini adalah gambar rangkaian kendali dan sekaligus rangkaian daya dari Water Level Control. Rangkaia
ini terdiri dari dua bagian yaitu menggunakan remote untuk mengoperasikan (menjalankan dan mematikan)
ompa air dan menggunakan pelampung untuk mengoperasikan pompa air secara otomatis.


Gambar 2. Rangkaian kendali dan rangkaian daya

Langkah-langkah kerja rangkaian Water Level Control
1. Diasumsikan bahwa tombol emergency, MCB rangkaian control dan MCB rangkaian daya tertutup atau sudah pada posisi on.
Pada keadaan normal kontak overload 95 – 96 tertutup dan kontak 97 – 98 terbuka
Posisi 1 yaitu pada saat selektor switch dipindahkan pada posisi 1-2 maka lampu indikator L2 akan menyala yang menandakan bahwa yang bekerja adalah pelampung (otomatis)
Ketika air di dalam bak telah kosong atau berkurang, pelampung akan tertarik ke bawah dan menutup kontak yang terdapat pada pelampung sehingga arus akan mengalir pada kontaktor K1 dengan demikian kontak utama 1–2 pada K1 akan menutup sedangkan kontak 3-6 pada RL (Relay) tetap terbuka sehingga motor akan berputar yang di tandai dengan menyalanya lampu indikator L4
Apabila motor mengalami kelebihan beban maka kontak 95-96 akan membuka dan kontak 97-98 akan menutup sehingga lampu indikator L3 yang menandakan kelebihan beban akan menyala dan pada saat itu motor akan berhenti berputar.
Jika air di dalam bak telah penuh atau telah mencapai level yang telah ditentukan maka pelampung di dalam air akan terangkat ke atas sehingga membuka kontak yang terdapat pada pelampung tersebut dan motor akan akan berhenti berputar.
Proses selanjutnya kembali ke langkah nomor 4.
Untuk posisi 2 selektor switch dipindahkan pada posisi 3-4 maka lampu indikator L1 akan langsung menyala yang menandakan bahwa operasi motor dilakukan secara remote (menyalakan dan mematikan motor) dan pada saat itu pelampung tidak akan bekerja
Untuk menyalakan motor tekan push button Son
Kontak 1-4 akan menutup karena koil 2-10 relay (RL) mendapat energy listrik sehingga arus akan mengalir melalui kontak 1-4 tersebut walaupun saklar Son dilepas
Dengan demikian kontak 3-6 dan 8-11 akan menutup sedangkan kontak 1-2 pada K1 tetap terbuka, dengan demikian motor akan berputar yang ditandai dengan menyalanya lampu indikator L4
Apabila motor mengalami kelebihan beban maka kontak 95-96 akan membuka dan kontak 97-98 akan menutup sehingga lampu indikator L3 yang menandakan kelebihan beban akan menyala dan pada saat itu motor akan berhenti berputar.
Tekan push button Soff untuk mematikan motor.
Baik untuk operasi dengan remote ataupun secara otomatis (dengan pelampung) apabila ada hal-hal yang tidak inginkan terjadi pada saat motor beroperasi dapat langsung menekan tombol emergency sehingga seluruh rangkaian akan padam.
Rangkaian Water Level Control di atas belumlah sempurna, anda bisa memodifikasinya supaya menjadi lebih
baik lagi dan juga lebih andal pastinya. Ini cuma salah satu contoh saja, jika anda ingin berusaha sedikit saja maka
hasilnya pasti akan lebih bagus lagi dan tentunya memakai desain yang dibuat sendiri akan memberikan kepuasan
yang tersendiri pula.
AdaUntuk pengoperasian pompa dengan remote, saya menggunakan relay yang dalam rangkaian disingkat dengan RL dengan pertimbangan penggunaan remote hanyalah sebagai cadangan jika pelampung mengalami kegagalan dalam pengoperasiannya. Anda dapat menggantinya dengan kontaktor. Jika anda menggunakan relay, relaynya harus disesuaikan dengan kapasitas arus dari motor pompa. Kalau tidak sesuai, bisa-bisa relaynya hangus dan anda akan merogoh kocek lebih dalam lagi. Menyedihkan!
Motor yang digunakan pada rangkaian di atas adalah motor induksi 1 fasa. Jika anda menggunakan motor induksi 3 fasa, maka rangkaian kontrolnya akan lebih rumit lagi. Silahkan anda berkreasi sendiri.
Pada kondisi (3) dari gambar pelampung, usahakan jangan sampai tali pada pelampung terjadi lilitan yang menyebabkan terbentuknya sebuah simpul sehingga kedua pelampung berkumpul pada satu titik pada tali pelampung. Hal ini akan menyebabkan pompa mati menyala dalam waktu yang relatif singkat. Apabila hal ini terjadi, maka lampu indikator L4 pada gambar akan berkedip-kedip. Keuntungannya, anda akan melihat nyala lampu indikator yang berkedip-kedip pada panel sehingga anda tidak perlu membeli lampu hias di toko kesayangan anda. Kerugiannya, anda akan berteriak histeris sampai nadanya mungkin mencapai 7 oktaf (melebihi Gita Gutawa) karena melihat tagihan rekening listrik anda yang meningkat dari biasanya jika anda membiarkan hal tersebut terus berlangsung. Tentu saja penyebabnya adalah motor mati menyala dalam waktu yang relative singkat, yang mana kita tahu bersama bahwa arus start dari motor induksi bisa 5 sampai 7 kali lebih besar dari arus nominalnya yang mana juga akan mempengaruhi putaran kWh meter anda.
Pengalaman adalah guru yang baik tetapi belajar dari pengalaman orang lain adalah Guru Terbaik. Jadi, jangan segan-segan untuk berlajar dari orang-orang yang sudah berpengalaman. So, take my advice and Go On! Thanks


Bacaan sederhana yang sering dikunjungi orang-orang kreatif, disini anda akan mendapatkan sedikit tehnik dan cara kerja dari sebuah rangkaian kontrol/ kendali dengan menggunakan beban Motor 3 phasa (Sebuah mesin penggerak dengan catu daya 3 phasa sebagai sumber tenaga):

Cara kerja motor 3 phasa :
1. motor 3 phasa akan bekerja /berputar apabila sudah dihubungkan dalam hubungan tertentu .
2. mendapat tegangan (jala-jala /power /sumber) sesuai dengan kapasitas motornya.

Bekerjanya hanya mengenal 2 hubungan yaitu :
a. motor bekerja bintang /star (Y)
    berarti motor harus dihubungkan bintang baik secara langsung pada terminal maupun melalui rangkaian kontrol.
b. Motor bekerja segitiga /Delta (▲)
    berarti motor harus dihubungkan segitiga baik secara langsung pada terminal maupun melalui rangkaian kontrol.

Kecuali :mesin-mesin yang berkapasitas tinggi diatas 10 HP, maka motor tersebut wajib bekerja segitiga (▲) dan harus melalui rangkaian kontrol star delta baik secara mekanik , manual, konvensional, digital , PLC.
Dimana bekerja awal (start) motor tersebut bekerja bintang hanya sementara, selang berapa waktu barulah motor bekerja segitiga dan motor boleh dibebani.

Cara menghubungkan motor dalam hubungan bintang (Y) :
1. Cukup mengkopelkan /menghubungkan salah satu dari ujung-ujung kumparan phasa menjadi satu
2. Sedangkan yang tidak dihhubungkan menjadi satu dihubungkan kesumber tegangan.

Cara menghubungkan motor dalam hubungan segitiga (▲) :
1. ujung-ujung pertama dari kumparan phasa I dihubungkan dengan ujung kedua dari kumparan phasa III
2. ujung-ujung pertama dari kumparan phasa II dihubungkan dengan ujung kedua dari kumparan phasa I
3. ujung-ujung pertama dari kumparan phasa III dihubungkan dengan ujung kedua dari kumparan phasa II
4. Sedangkan untuk kesumber tegangan terserah kita menghubungkannya , boleh melalui ujung –ujung pertama atau ujung-ujung        kedua.



Cara penyambungan /pengkonekan ujung-ujung kumparan phasa system Direct On Line(DOL) dilihat dari tegangan jala-jala dengan plat nama pada motor.

No Jala-jala Nama plat motor Hubungan /koneksi
   1 380 V 380 V /220V Y (bintang) tegangan di motor 220 V
   2 380 V 220V /380 V Y (bintang) tegangan di motor 220 V
   3 220 V 220V /380 V ▲ (segitiga) tegangan di motor 220 V
   4 220 V 380 V /220V ▲ (segitiga) tegangan di motor 220 V
   5 380 V 380 V Sebagai pengaman kita hubungkan (Y),bila tegangan kurang kita hubungkan ▲
   6 380 V 380 V /440 V Motor harus bekerja ▲ karena kapasitas motor sebenarnya 380 V


Kesimpulan :
1. Bahwa dari berbagai data kapasitas tegangan yang tercantum pada plat motor, sesungguhnya kapasitas tegangan pada         motor tersebut adalah tegangan yang rendah. 
2. Putaran motor tidak tergantung pada besar kecilnya tegangan input melainkan tergantung dari jumlah kutup (pok), makin banyak jumlah kutup makin sedikit putarannya atau sebaliknya.
3. Keburukan motor 3 phasa yaitu apabila bekerja diatas kemampuan PK yang tersedia, motor tersebut langsung mendengung dan berhenti, berbeda dengan motor DC seri yang makin bertambah beban maka motor berputar menyesuaikan bebannya.
4. Apabila salah satu tegangan input putus maka motor akan bekerja tidak normal/mendengung .
5. Apabila pada pengkonekkan bintang /segitiga salah pengkonekkan pada salah satu ujung-ujung kumparan phasa maka akan mengakibatkan bekerja tidak normal (mendengung/bahkan konslet)
6. Untuk mengukur banyaknya putaran motor (rpm)dengan alat TACOMETER.
7. Mengukur kondisi isolasi email(kumparan)masih baik atau tidak ataupun terjadi tegangan tembus kita gunakan alat ukur             MEGER dan sekarang disebut INSULATION TESTER.ingat nilai isolasi yang bagus dihitung setiap 1000Ω perVolt dan satuannya       harus Mega.
8. Mengukur baik/buruknya pembumian /arde /ground/massa dengan menggunakan EARTH TESTER atau menggunakan dim    meter karena nilai arde yang bagus nilainya harus sekecil mungkin bahkan mendekati 0, maksimal 5 Ω, untuk segera mengetahui ardenya bagus atau tidak, cukup dengan menggunakan AVOMETER yaitu tegangan antara phasa dengan nol dan phasa dengan arde harus sama.
9. Menghitung besarnya daya menggunakan rumus P = E.I.cos q
10. Untuk mennghitung besarnya daya setiap PK (HP) pada motor.

     Prinsip kerja motor 3 phasa dan terjadinya slip
Jika kumparan 3 phasa dari motor 3 phasa dihubungkan dengan jala-jala 3 phasa, maka pada kumparan stator tersebut timbul medan magnet putaran ns (putaran sinkron), medan magnet ini memotong batang-batang konduktor pada rotor sehingga timbul GGL (Gaya Gerak Listrik). karena batang-batang konduktor tersebut dihubungkan singkat maka akan terjadi arus induksi pada batang tersebut sehingga menghasilkan medan magnet pada batang tersebut .
Medan magnet pada rotor berinteraksi dengan medan magnet pada stator terjadilah putaran (nr) = putaran rotor.
Karena prosesnya berdasarkan induksi maka rotor ini disebut motor induksi, syaratnya nr tidak sama dengan ns, Berarti terjadi perbedaan antara nr dan ns yang disebut dengan Slip

  ns - nr
  SLIP (%) = ns x 100 %
 
Berikut ini merupakan rangkaian utama dalam menjalankan motor 3 Fase dengan hubungan STAR-DELTA Otomatis.


Dan berikut ini merupakan rangkaian kendali dalam menjalankan motor 3 Fase dengan hubungan STAR-DELTA Otomatis.

PERAWATAN DAN PERBAIKAN INSTALASI LISTRIK

Sebelum melaksanakan perawatan dan perbaikan hubungan kelistrikan instalasi listrik, sakelar pemutus daya dan MCB harus dibuka terlebih dahulu serta sekering dilepaskan. Pekerjaan-pekerjaan dalam perawatan dan
perbaikan hubungan kelistrikan instalasi listrik meliputi :
A. Kotak sekering / PHB
Langkah-langkah yang harus dikerjakan adalah sebagai berikut :
(1) Kotak sekering dibuka tutupnya dengan obeng, tetapi sebelumnya sakelar pemutus daya dilepaskan dahulu. Sambungan kawat pada terminal-terminal dilepaskan dengan membuka sekerup-sekerup terminal menggunakan obeng. Karena panas dan lambat pada terminal-terminal tersebut sering terbentuk kotoran atau kerak-kerak yang dapat menghambat aliran arus listrik, maka harus dibersihkan dengan menggunakan amplas (kertas gosok) yang halus dengan cara menggosoknya sampai bersih. Setelah bersih pasang kembali ujung-ujung kawat pada terminal-terminalnya, agar tidak terjadi kesalahan dalam penyambungan, maka sebelum
melepaskan terminal jika perlu diberi tanda..
(2) Sakelar-sakelar dibuka tutupnya, sambungan-sambungan kawat pada terminal dilepaskan dan dibersihkan dari kotoran, setelah itu dipasang kembali dengan kuat. Jika kontak geser pada sakelar sudah rusak atau aus, sakelar tersebut harus diganti.
(3) Tutup kotak kontak–kotak kontak dibuka, sambungan pada terminal dibuka dan dibersihkan, setelah bersih dipasang kembali dengan kuat, lubang-lubang kontak pada kotak kontak dibersihkan.
(4) Kabel-kabel di atas plafon bila ada yang rusak misalnya digigit tikus, bila memungkinkan kabel tersebut diganti, bila tidak memungkinkan bagian yang rusak isolasinya dibungkus dengan isolasi yang baik. Sambungan-sambungan kawat pada kotak sambung dibersihkan dari kotoran, bila ada yang kendor ikuatkan kembali dengan dipuntir menggunakan tang. Bila tutup sambungan (las dop) ada yang kendor atau lepas dan tutup kotak sambungan ada yang lepas, maka dipasang kembali dengan kuat.
(5) Tahanan isolasi antara fase dan nol, fase dan fase, fase dan bumi (ground), nol dan bumi diukur. Bila hasilnya lebih kecil dari 1000 tiap volt maka diadakan pemeriksaan bagian instalasi yang mengalami kerusakan isolasi dan harus diganti kabelnya.
B.Sambungan kawat Instalasi
Merawat dan memperbaiki sambungan-sambungan kawat yang ada di dalam kotak-kotak sambung yaitu dengan cara menggunakan tangga menuju ke atas plafon, kemudian tutup kotak-kotak sambung dibuka
dan sambungan-sambungan kawatnya dibersihkan dan dikuatkan lagi menggunakan tang kombinasi. Pada umumnya bentuk sambungan kawat yang digunakan jenis ekor babi, setiap sambungan harus diisolasi menggunakan benang lasdop atau isolasi unibel dengan kuat, sehingga logam kabel tidak kelihatan. Pada umumnya kotak sambung terbuat dari plastik berbentuk lingkaran, ada juga yang berbentuk soket penyambung dari porselin
atau plastik, tetapi jarang digunakan

Kamis, 10 November 2011

PLC

Pemanfaatan Programmable Logic Controller dalam Dunia Industri

Perkembangan  industri dewasa ini, khususnya dunia industri  di negara kita, berjalan  amat pesat seiring dengan  meluasnya  jenis produk-produk industri, mulai dari apa yang digolongkan sebagai industri hulu sampai dengan industri hilir. Kompleksitas  pengolahan bahan mentah menjadi bahan baku,  yang berproses baik secara fisika maupun secara kimia, telah memacu  manusia untuk  selalu meningkatkan  dan memperbaiki  unjuk  kerja  sistem  yang mendukung  proses tersebut, agar semakin produktif dan  efisien.  Salah satu yang menjadi perhatian utama dalam hal ini ialah penggunaan  sistem pengendalian proses industri (sistem kontrol industri).
Dalam  era  industri  modern, sistem  kontrol  proses  industri biasanya merujuk pada otomatisasi sistem kontrol yang digunakan.  Sistem kontrol  industri  dimana peranan manusia masih amat dominan  (misalnya dalam  merespon besaran-besaran proses yang diukur oleh  sistem  kontrol tersebut dengan serangkaian langkah berupa pengaturan panel dan  saklar-saklar  yang  relevan) telah banyak digeser dan digantikan  oleh  sistem kontrol  otomatis.  Sebabnya jelas  mengacu  pada faktor-faktor  yang  mempengaruhi  efisiensi   dan produktivitas  industri  itu sendiri, misalnya faktor human  error  dan tingkat keunggulan yang ditawarkan sistem kontrol tersebut. Salah  satu  sistem kontrol yang amat luas  pemakaiannya  ialah Programmable  Logic  Controller (PLC). Penerapannya  meliputi  berbagai jenis industri mulai dari industri rokok, otomotif, petrokimia, kertas, bahkan  sampai  pada industri tambang,  misalnya   pada pengendalian  turbin  gas  dan  unit industri lanjutan hasil  pertambangan.  Kemudahan transisi  dari sistem kontrol sebelumnya (misalnya dari  sistem  kontrol berbasis relay mekanis) dan kemudahan trouble-shooting dalam konfigurasi sistem merupakan dua faktor utama yang mendorong populernya PLC ini.
Artikel ini mecoba memberikan gambaran ringkas tentang PLC ini dari sudut pandang piranti penyusunnya.

Apakah Sebenarnya PLC itu?

NEMA   (The  National  electrical  Manufacturers   Association) mendefinisikan  PLC sebagai  piranti elektronika   digital   yang menggunakan memori yang bisa diprogram sebagai penyimpan internal  dari sekumpulan instruksi dengan mengimplementasikan fungsi-fungsi  tertentu, seperti  logika,  sekuensial, pewaktuan,  perhitungan,  dan aritmetika, untuk  mengendalikan berbagai jenis mesin ataupun proses melalui  modul I/O digital dan atau analog.
PLC merupakan sistem yang dapat memanipulasi, mengeksekusi, dan atau memonitor keadaan proses pada laju yang amat cepat,  dengan dasar  data yang bisa diprogram  dalam  sistem  berbasis mikroprosesor  integral. PLC menerima masukan dan menghasilkan  keluaran sinyal-sinyal listrik untuk mengendalikan suatu sistem. Dengan  demikian besaran-besaran fisika dan kimia yang dikendalikan, sebelum diolah  oleh PLC, akan diubah menjadi sinyal listrik baik analog maupun digital,yang merupakan data dasarnya.. Karakter  proses yang dikendalikan oleh PLC  sendiri  merupakan proses yang sifatnya bertahap, yakni proses itu berjalan  urut untuk mencapai kondisi akhir yang diharapkan. Dengan kata lain proses  itu terdiri beberapa subproses, dimana subproses  tertentu  akan berjalan sesudah  subproses  sebelumnya  terjadi.  Istilah umum  yang digunakan  untuk proses yang berwatak demikian ialah  proses sekuensial (sequential process). Sebagai perbandingan, sistem kontrol yang  populer selain PLC, misalnya Distributed Control System (DCS), mampu  menangani proses-proses yang  bersifat sekuensial dan juga  kontinyu  (continuous process) serta mencakup loop kendali yang relatif banyak.

Piranti Penyususnan PLC

PLC  yang  diproduksi oleh berbagai perusahaan  sistem  kontrol terkemuka saat ini biasanya mempunyai ciri-ciri sendiri yang  menawarkan keunggulan  sistemnya, baik  dari segi  aplikasi (perangkat  tambahan) maupun modul utama sistemnya. Meskipun demikian pada umumnya setiap PLC (sebagaimana komputer pribadi Anda yang cenderung mengalami standarisasi dan kompatibel satu sama lain) mengandung empat bagian (piranti) berikut ini:
  1. Modul Catu daya.
  2. Modul CPU.
  3. Modul Perangkat Lunak.
  4. Modul I/O.


Gambar 1 Gambar 2
Gambar 2. Interaksi antar modul dalam PLC Trisen TS3000.

Modul Catu Daya (Power Supply: PS)

PS  memberikan tegangan DC ke berbagai modul PLC  lainnya  selain modul tambahan dengan kemampuan arus total sekitar  20A  sampai  50A, yang sama dengan battery lithium integral (yang digunakan  sebagai  memory backup). Seandainya PS ini gagal atau tegangan bolak balik masukannya turun dari  nilai spesifiknya,  isi memori akan  tetap terjaga.  PLC  buatan Triconex, USA, yakni Trisen TS3000 bahkan mempunyai double power  supply yang berarti apabila satu PS-nya gagal, PS kedua otomatis akan  mengambil alih fungsi catu daya sistem.

Modul CPU

Modul CPU yang disebut juga modul kontroler atau prosesor  terdiri dari dua bagian:
    1. Prosesor
    2. Memori
1. Prosesor berfungsi:
    • mengoperasikan dan mengkomunikasikan modul-modul PLC melalui bus-bus serial atau paralel yang ada.
    • Mengeksekusi program kontrol.
2. Memori, yang berfungsi:
    • Menyimpan informasi digital yang bisa diubah dan  berbentuk  tabel  data, register citra, atau RLL (Relay  Ladder  Logic),  yang merupakan program pengendali proses.
Pada PLC tertentu kadang kita jumpai pula beberapa prosesor sekaligus dalam satu modul, yang ditujukan untuk mendukung keandalan sistem. Beberapa prosesor tersebut bekerja sama dengan suatu prosedur tertentu untuk meningkatkan kinerja pengendalian. Contoh PLC jenis ini ialah Trisen TS3000 mempunyai tiga buah prosesor dengan sistem yang disebut Tripple Redundancy Modular.
Kapasitas memori pada PLC juga bervariasi. Trisen  TS3000, misalnya, mempunyai memori 384 Kbyte (SRAM)  untuk program pengguna dan 256 Kbyte (EPROM) untuk sistem operasinya.  Simatic S5  buatan Siemens mempunyai memori EPROM 16Kbyte dan RAM 8 Kbyte.  PLC  FA-3S  Series mempunyai memori total sekitar 16 Kbyte. Kapasitas memori ini tergantung penggunaannya dan seberapa jauh Anda sebagai  mengoptimalisasikan  ruang  memori  PLC yang Anda miliki,  yang  berarti pula tergantung seberapa banyak lokasi yang diperlukan program kontrol  untuk mengendalikan  plant tertentu. Program kontrol untuk  pengaliran bahan bakar dalam turbin gas tentu membutuhkan lokasi memori yang lebih banyak dibandingkan  dengan program kontrol untuk menggerakkan putaran  mekanik robot pemasang  bodi mobil pada industri otomotif. Suatu modul memori tambahan  bisa juga diberikan ke sistem utama apabila  kebutuhan memori memang meningkat.

Modul Program Perangkat Lunak

PLC  mengenal  berbagai  macam  perangkat  lunak,  termasuk  State Language, SFC, dan bahkan C. Yang paling populer digunakan ialah RLL  (Relay   Ladder Logic). Semua  bahasa  pemrograman   tersebut   dibuat berdasarkan  proses sekuensial yang terjadi dalam plant  (sistem  yang dikendalikan). Semua instruksi dalam program akan dieksekusi oleh  modul CPU, dan penulisan program itu bisa dilakukan pada keadan on line maupun off line.  Jadi  PLC  dapat  bisa  ditulisi program kontrol  pada  saat  ia mengendalikan   proses  tanpa  mengganggu pengendalian yang   sedang dilakukan. Eksekusi perangkat lunak tidak akan mempengaruhi operasi I/O yang tengah berlangsung.

Modul I/O

Modul I/O merupakan modul masukan dan modul keluaran yang bertugas mengatur hubungan PLC dengan piranti eksternal atau periferal yang  bisa berupa  suatu komputer host, saklar-saklar, unit penggerak  motor,  dan berbagai macam sumber sinyal yang terdapat dalam plant.

1. Modul masukan

    Modul masukan berfungsi untuk menerima sinyal dari unit pengindera periferal, dan memberikan pengaturan sinyal, terminasi, isolasi,  maupun indikator  keadaan sinyal masukan. Sinyal-sinyal dari piranti  periferal akan di-scan dan keadaannya akan dikomunikasikan melalui modul antarmuka dalam PLC. Beberapa jenis modul masukan di antaranya:  
      - Tegangan  masukan  DC (110, 220, 14, 24, 48, 15-30V)  atau  arus C(4-20mA).
      - Tegangan AC ((110, 240, 24, 48V) atau arus AC (4-20mA). - Masukan TTL (3-15V). - Masukan analog (12 bit). - Masukan word (16-bit/paralel). - Masukan termokopel. - Detektor suhu resistansi (RTD). - Relay arus tinggi. - Relay arus rendah. - Masukan latching (24VDC/110VAC). - Masukan terisolasi (24VDC/85-132VAC). - Masukan cerdas (mengandung mikroprosesor). - Masukan pemosisian (positioning). - Masukan PID (proporsional, turunan, dan integral). - Pulsa kecepatan tinggi. - Dll.

2. Modul keluaran

    Modul keluaran mengaktivasi berbagai macam piranti seperti  aktuator  hidrolik, pneumatik, solenoid, starter motor,  dan  tampilan status  titik-titik periferal yang terhubung dalam sistem.  Fungsi modul  keluaran lainnya mencakup conditioning, terminasi dan  juga pengisolasian  sinyal-sinyal yang ada. Proses aktivasi  itu  tentu saja dilakukan dengan pengiriman sinyal-sinyal diskret dan  analog yang relevan, berdasarkan watak PLC sendiri yang merupakan piranti digital. Beberapa modul keluaran yang lazim saat ini di antaranya:
      - Tegangan DC (24, 48, 110V) atau arus DC (4-20mA - Tegangan AC (110, 240V) atau arus AC (4-20mA). - Keluaran analog (12-bit). - Keluaran word (16-bit/paralel) - Keluaran cerdas. - Keluaran ASCII. - Port komunikasi ganda.  
    Dengan berbagai modul di atas PLC bekerja mengendalikan berbagai plant yang kita miliki. Mengingat sinyal-sinyal yang ditanganinya bervariasi dan merupakan informasi yang memerlukan pemrosesan saat itu juga, maka sistem yang kita miliki tentu memiliki perangkat pendukung yang mampu mengolah secara real time dan bersifat multi tasking,. Anda bayangkan bahwa pada suatu unit pembangkit tenaga listrik misalnya, PLC Anda harus bekerja 24 jam untuk mengukur suhu buang dan kecepatan turbin, dan kemudian mengatur bukaan katup yang menentukan aliran bahan bakar berdasarkan informasi suhu buang dan kecepatan di atas., agar didapatkan putaran generator yang diinginkan! Pada saat yang sama sistem pelumasan turbin dan sistem alarm harus bekerja baik baik di bawah pengendalian PLC! Suatu piranti sistem operasi dan komunikasi data yang andal tentu harus kita gunakan. Teknologi cabling, pemanfaatan serat optik, sistem operasi berbasis real time dan multi tasking semacam Unix, dan fasilitas ekspansi yang memadai untuk jaringan komputer merupakan hal yang lazim dalam instalasi PLC saat ini.

Sumber:

  1. Robert B. Hee, A.A.S., Knowing the Basics of PLCs-Part 1, EC &M Magazine, October 1995
  2. TS3000 Planning & Installation Guide , March 1988
  3. T. senbun, F. Hanabuchi, Instrumentation System, Fundamentals and Applications, Yokogawa electric Corp. Tokyo 1991.
  4. Sumber-sumber lain.